
10/14/2013 

1 

1 

 

Sistemi Embedded 

Introduzione 

 
Riferimenti bibliografici 

“Embedded System Design: A Unified Hardware/Software Introduction” , Frank Vahid, Tony Givargis, John Wiley & Sons 

Inc., ISBN:0-471-38678-2, 2002. 

“Computers as Components: Principles of Embedded Computer Systems Design ”, Wayne Wolf, Morgan Kaufmann 

Publishers, ISBN: 1-55860-541-X, 2001 

 

2 

• Computing systems are everywhere 

• Most of us think of “desktop” computers 

– PC’s 

– Laptops 

– Mainframes 

– Servers 

• But there’s another type of computing system 
– Far more common... 

 

Embedded systems overview 



10/14/2013 

2 

3 

Embedded systems overview 

• Embedded computing systems  
– Computing systems embedded 

within electronic devices 

– Hard to define. Nearly any 
computing system other than a 
desktop computer 

– Billions of units produced yearly, 
versus millions of desktop units 

– Perhaps 50 per automobile 

 

4 

Embedded Systems 

Embedded system: any device that includes a programmable 

computer but is not itself a general-purpose computer. 

 

Take advantage of application characteristics to optimize the 

design 



10/14/2013 

3 

Embedding a computer 

CPU 

mem 

input 

output analog 

analog 

embedded 
computer 

6 

Application areas (1)  

• Automotive electronics 

• Aircraft electronics 

• Trains 

• Telecommunication 

•   Military applications 



10/14/2013 

4 

7 

Application areas (2)  

• Consumer 

electronics 

8 

A “short list” of embedded systems 

Anti-lock brakes 

Auto-focus cameras 

Automatic teller machines 

Automatic toll systems 

Automatic transmission 

Avionic systems 

Battery chargers 

Camcorders 

Cell phones 

Cell-phone base stations 

Cordless phones 

Cruise control 

Curbside check-in systems 

Digital cameras 

Disk drives 

Electronic card readers 

Electronic instruments 

Electronic toys/games 

Factory control 

Fax machines 

Fingerprint identifiers 

Home security systems 

Life-support systems 

Medical testing systems 

Modems 

MPEG decoders 

Network cards 

Network switches/routers 

On-board navigation 

Pagers 

Photocopiers 

Point-of-sale systems 

Portable video games 

Printers 

Satellite phones 

Scanners 

Smart ovens/dishwashers 

Speech recognizers 

Stereo systems 

Teleconferencing systems 

Televisions 

Temperature controllers 

Theft tracking systems 

TV set-top boxes 

VCR’s, DVD players 

Video game consoles 

Video phones 

Washers and dryers 

 



10/14/2013 

5 

9 

Cars 

 Multiple processors 
 Up to 100  
 Networked together 

 Multiple networks 

–Functions: 
• ABS: Anti-lock braking systems 

• ESP: Electronic stability control 

• Airbags 

• Theft prevention with smart keys 

• Blind-angle alert systems 

• ... etc ... 

BMW 850i 

brake 

sensor 

brake 

sensor 

brake 

sensor 

brake 

sensor 

ABS hydraulic 
pump 



10/14/2013 

6 

11 

Cars 

– Large diversity in processor types: 
• 8-bit – door locks, lights, etc.  

• 16-bit – most functions 

• 32-bit – engine control, airbags 

 

– Form follows function 
• Processing where the action is 

• Sensors and actuators distributed all over the 
vehicle 

Cars 

BMW 7 series 
Up to 70 Electronic Modules 
Electronic Cost : 25% total Car cost 
Semiconductor Content > 1000 $ 



10/14/2013 

7 

13 

Some common characteristics of 

embedded systems 

 

• Single-functioned 
- Executes a single program, repeatedly 

 

• Tightly-constrained 
- Low cost, low power, small, fast, etc. 

 

• Reactive and real-time 

- Continually reacts to changes in the system’s environment 

- Must compute certain results in real-time without delay 

 

14 

Microcontroller 

CCD preprocessor Pixel coprocessor 

A2D 

D2A 

JPEG codec 

DMA controller 

Memory controller ISA bus interface UART LCD ctrl 

Display ctrl 

Multiplier/Accum 

Digital camera chip 

lens 

CCD 

• Single-functioned -- always a digital camera 

• Tightly-constrained -- Low cost, low power, small, fast 

• Reactive and real-time  

Digital Camera 



10/14/2013 

8 

Some common characteristics of 

embedded systems 

An embedded system is designed to perform one or a few 

specific applications: 

• The applications to be executed are known at design time  

•  It is often desirable flexibility of the system for future 

updates or for re-use of the component. Normally this 

goal is obtained by making the system reprogrammable 

 

• Often have to run sophisticated algorithms or multiple 

algorithms. 
- Cell phone, laser printer. 

Characteristics of embedded systems 

• Embedded Systems  interact with the physical environment. 

They include devices such as sensors and actuators 
-Transducers, sensors and actuators are essential enabling 

technologies for embedded systems 
• MEMS (microelectromechanical  sensors) accelerometers, gyroscopes, 

inertial modules, pressure sensors 

 

• Embedded Systems are Hybrid Dystems ( digital + analogic) 
–A/D and D/A are included 

• Dedicated user interface: 

-  no mouse, keyboard and screen 

- display with reduced size 

– reduced number on I/O devices 

 



10/14/2013 

9 

• Some functions are more efficiently executed 

using dedicated hardware devices such as DSP, 

IP cell, etc. 

• Typical DSP applications: 
– generic signals : filtering, DFT, FFT, etc. 

– voice: encoding, decoding, equalization, etc. 

– modem: modulation, demodulation 

Characteristics of embedded systems 

18 

Characteristics of embedded systems 

• Many ES must meet real-time constraints 

• Real-time system must react to stimuli from the controlled 

object (or the operator) within the time interval dictated 

by the environment. 

• For real-time systems, right answers arriving too late are 

wrong. 

• Must finish operations by deadlines. 

- Hard real time: missing deadline causes failure. 

- Soft real time: missing deadline results in degraded 

performance. 

• Many systems are multi-rate: must handle operations at 

widely varying rates. 

 



10/14/2013 

10 

19 

Characteristics of embedded systems 

 

 Typically, ES are reactive systems: 
“A reactive system is one which is in continual 

interaction with is environment and executes at a pace 

determined by that environment“ [Bergé, 1995] 

 

  Behavior depends on input and current state. 

 automata model appropriate, 

20 

Challenges for implementation in hardware 

 Lack of flexibility (changing standards). 

 Mask cost for specialized HW becomes very expensive 

Trend towards 

implementation 

in Software 



10/14/2013 

11 

Heterogeneous HW/SW Implementations 

of Embedded Systems 

Additionally, flexibility and tight time to market 

requirements favour SW implementations.   

Cost 

Performance 

Only SW, 

Low cost and 

Low performance. 

Only HW, 

High cost and 

High performance. 

Mixed HW-SW, 

Medium cost and  

performance. 

22 

Importance of Embedded Software 
and Embedded Processors 

“... the New York Times has estimated that the average 
American comes into contact with about 60 micro-processors 
every day....” [Camposano, 1996] 

Latest top-level BMWs contain over 100 micro-processors 
[Personal communication] 

Most of the functionality will be implemented in software 



10/14/2013 

12 

23 

Challenges for implementation in 
software 

If embedded systems will be implemented mostly in 
software, then why don‘t we just use what software 
engineers have come up with? 

Exponential increase in software complexity 

In some areas code size is doubling every 9 months 
[ST Microelectronics, Medea Workshop, Fall 2003] 

 

... > 70% of the development cost for complex 
systems such as automotive electronics and 
communication systems are due to software 
development 

24 

Challenges for Embedded Software 

• How can we capture the required behavior of complex 

systems ? 

• How do we validate specifications? 

• How do we translate specifications efficiently into 

implementation? 

• Do software engineers ever consider power dissipation? 

• How can we check that we meet real-time constraints? 

• Which programming language provides real-time 

features? 

• How do we validate embedded real-time software?     

(large volumes of data) , testing m 



10/14/2013 

13 

25 

Challenges for Embedded Software 

 It is not sufficient to consider ES 
just as a special case of software engineering 

 

    EE knowledge must be available, Walls between EE       
and CS must be torn down  

26 

Co-design 

In the past: 

– Hardware and software 

design technologies were 

very different 

– Recent maturation of 

synthesis enables a unified 

view of hardware and 

software 

• Now: 

– Hardware/software 

“codesign” Implementation 

Assembly instructions 

Machine instructions 

Register transfers 

Compilers 

(1960's,1970's) 

Assemblers, linkers 

(1950's, 1960's) 

Behavioral synthesis 

(1990's) 

RT synthesis 

(1980's, 1990's) 

Logic synthesis 

(1970's, 1980's) 

Microprocessor plus 

programbits:“software” 
VLSI, ASIC, or PLD 

implementation:“hardware” 

Logic gates 

Logic equations / FSM's 

Sequential program code (e.g., C, VHDL)  

The choice of hardware versus software for a particular function is simply a 

tradeoff among various design metrics. there is no fundamental difference 

between what hardware or software can implement. 



10/14/2013 

14 

27 

Design metrics 

28 

Design challenge – optimizing design 

metrics 

 Obvious design goal: 

 Construct an implementation with desired functionality 

 Key design challenge: 

 Simultaneously optimize numerous design metrics 

 Design metric 

  A measurable feature of a system’s implementation 

 Optimizing design metrics is a key challenge 



10/14/2013 

15 

29 

Design challenge – optimizing design 

metrics 

 Common metrics 

 Unit cost: the monetary cost of manufacturing each copy of the system, 

excluding NRE cost 

 NRE cost (Non-Recurring Engineering cost): The one-time 

monetary cost of designing the system 

 Size: the physical space required by the system 

 Performance: the execution time or throughput of the system 

 Power: the amount of power consumed by the system 

 Flexibility: the ability to change the functionality of the system without 

incurring heavy NRE cost 

30 

Design challenge – optimizing design 

metrics 

 Common metrics (continued) 

 Time-to-prototype: the time needed to build a working version of the 

system 

 Time-to-market: the time required to develop a system to the point that it 

can be released and sold to customers 

 Maintainability: the ability to modify the system after its initial release 

 Correctness, safety, many more 

 

 



10/14/2013 

16 

31 

Design metric competition -- improving one may 

worsen others 

Size Performance 

Power 

NRE cost 

Microcontroller 

CCD preprocessor Pixel coprocessor 
A2D 

D2A 

JPEG codec 

DMA controller 

Memory controller ISA bus interface UART LCD ctrl 

Display ctrl 

Multiplier/Accum 

Digital camera chip 

lens 

CCD 

Hardware 

Software 

 Expertise with both software 

and hardware is needed to 

optimize design metrics 

 Not just a hardware or software 

expert, as is common 

 A designer must be comfortable 

with various technologies in 

order to choose the best for a 

given application and 

constraints 

32 

Time-to-market 

Reve

nues 

($)  

Time (months)  

 Time required to develop a 

product to the point it can 

be sold to customers 

 Market window 

 Period during which the 

product would have highest 

sales 

 Average time-to-market 

constraint is about 8 months 

 Delays can be costly 

 



10/14/2013 

17 

33 

Losses due to delayed market entry 

On-time      Delayed 

entry           entry 

Peak revenue 

Peak revenue from 

delayed entry 

Market rise Market fall 

W 2W 

Time 

D 

On-time 

Delayed 

R
ev

en
u
es

 (
$
)  

 Simplified revenue model 

 Product life = 2W, peak at W 

 Time of market entry defines a 

triangle, representing market 

penetration 

 Triangle area equals revenue 

 Loss  

 The difference between the on-

time and delayed triangle 

areas 

 

34 

Losses due to delayed market entry 

On-time      Delayed 

entry           entry 

Peak revenue 

Peak revenue from 

delayed entry 

Market rise Market fall 

W 2W 

Time 

D 

On-time 

Delayed 

R
ev

en
u
es

 (
$
)  

 Area = 1/2 * base * height 

 On-time = 1/2 * 2W * W 

 Delayed = 1/2 * (W-D+W)*(W-D) 

 Percentage revenue loss = 

(D(3W-D)/2W2)*100% 

 Try some examples 

 – Lifetime 2W=52 wks, delay D=4 wks 

– (4*(3*26 –4)/2*26^2) = 22% 

– Lifetime 2W=52 wks, delay D=10 wks 

– (10*(3*26 –10)/2*26^2) = 50% 

– Delays are costly! 

 



10/14/2013 

18 

35 

NRE and unit cost 

 Costs: 

 Unit cost: the monetary cost of manufacturing each copy of the system, excluding 
NRE cost 

 NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of 
designing the system 

 total cost = NRE cost  +    unit cost * # of units 

 per-product cost   = total cost  /   # of units    

    =  (NRE cost / # of units)  + unit cost 

 

 
• Example 

– NRE=$2000, unit=$100 

– For 10 units 

– total cost = $2000 + 10*$100 = $3000 

– per-product cost = $2000/10 + $100 = $300 

 

 Amortizing NRE cost over the units results in an 

additional $200 per unit 

36 

NRE and unit cost 

1000

10000

100000

1000000

10000000

10 50 250 1250 6250 31250

T
o

ta
l C

o
s

t 
($

)

Numer of units (volume)

A

B

C

1

10

100

1000

10000

100000

10 50 250 1250 6250 31250

p
e

r 
p

ro
d
u

c
t c

o
s

t  
($

)

Numer of units (volume)

A

B

C

 Compare technologies by costs -- best depends on quantity 

 Technology A:  NRE=$2,000,   unit=$100 

 Technology B:  NRE=$30,000,  unit=$30 

 Technology C:  NRE=$100,000, unit=$2 

 

• But, must also consider time-to-market 



10/14/2013 

19 

37 

The performance design metric 

 Widely-used measure of system, widely-abused 
 Clock frequency, instructions per second – not good measures 

 Digital camera example – a user cares about how fast it processes images, not 
clock speed or instructions per second 

 Latency (response time) 
 Time between task start and end 

 e.g., Camera’s A and B process images in 0.25 seconds 

 Throughput 
 Tasks per second, e.g. Camera A processes 4 images per second 

 Throughput can be more than latency seems to imply due to concurrency, e.g. 
Camera B may process 8 images per second (by capturing a new image while 
previous image is being stored). 

 Speedup of B over S = B’s performance / A’s performance 
 Throughput speedup = 8/4 = 2 


